Bromine and Antimony NQR of 4-Aminopyridinium Tetrabromoantimonate(III)

Haruo Niki, Mamoru Yogi, Mikako Tamanaha, Urara Seto, Masao Hashimoto^a, and Hiromitsu Terao^b

Department of Physics, Faculty of Science, University of the Ryukyus,

Nishihara, Okinawa 903-0213, Japan

Reprint requests to Dr. H. N.; E-mail: niki@sci.u-ryukyu.ac.jp

Z. Naturforsch. **57 a,** 469–472 (2002); received April 9, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

The temperature dependences of T_1 and T_2 of ⁸¹Br and ¹²¹Sb NQR have been measured in order to study the phase transition at $T_c = 224$ K as well as the crystal dynamics in 4-aminopyridinium tetrabromoantimonate(III) (4-NH₂PyHSbBr₄). The temperature dependence of T_1 of ⁸¹Br and ¹²¹Sb NQR follows the usual T^2 law in the range from 80 to 120 K. T_1 is dominated by fluctuations of the EFG at the Br and Sb nuclei due to lattice vibrations.

The T_1 vs. 1/T curves in the region between about 120 and 140 K can be described by exponential curves. The activation energies of motions obtained from these curves are similar to those from proton NMR. The exponential changes of T_1 of Br and Sb NQR are attributable to fluctuations caused by the thermal motion of 4-NH₂PyH cations.

Echo signals of Br and Sb NQR in the low temperature phase could not be detected at temperatures higher than 145 and 150 K, respectively, because the S/N ratios became poor owing to the very short T_2 . The echo signals could also not be detected at temperatures above T_2 because of the short T_2 .

Key words: 4-NH₂PyHSbBr₄; Phase Transition; ⁸¹Br NQR, ¹²¹Sb NQR.

^a Department of Chemistry, Faculty of Science, Kobe University, Nadaku, Kobe 657-8501, Japan

b Department of Chemistry, Faculty of Integrated Arts and Sciences, Tokushima University, Minamijosanijma-cho, Tokushima 770-8502, Japan